Quarter-regular biembeddings of Latin squares

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quarter-regular biembeddings of Latin squares

In this talk I will review the concept of the biembedding of two latin squares. Of particular interest will be the regular biemedding of two isomorphic copies of the latin square corresponding to the cyclic group of order n, denoted Cn. Grannell and Griggs have shown that, for all n, a regular biembedding exists, and in addition, that the automorphism group of the regular biembedding has order ...

متن کامل

Third-regular biembeddings of Latin squares

For each positive integer n ≥ 2, there is a well-known regular orientable Hamiltonian embedding of Kn,n, and this generates a regular face 2-colourable triangular embedding of Kn,n,n. In the case n ≡ 0 (mod 8), and only in this case, there is a second regular orientable Hamiltonian embedding of Kn,n. The current paper presents an analysis of the face 2-colourable triangular embedding of Kn,n,n ...

متن کامل

On Biembeddings of Latin Squares

A known construction for face 2-colourable triangular embeddings of complete regular tripartite graphs is re-examined from the viewpoint of the underlying Latin squares. This facilitates biembeddings of a wide variety of Latin squares, including those formed from the Cayley tables of the elementary Abelian 2-groups Ck 2 (k 6= 2). In turn, these biembeddings enable us to increase the best known ...

متن کامل

A Construction for Biembeddings of Latin Squares

An existing construction for face 2-colourable triangular embeddings of complete regular tripartite graphs is extended and then re-examined from the viewpoint of the underlying Latin squares. We prove that this generalization gives embeddings which are not isomorphic to any of those produced by the original construction.

متن کامل

Biembeddings of Latin squares obtained from a voltage construction

We investigate a voltage construction for face 2-colourable triangulations by Kn,n,n from the viewpoint of the underlying Latin squares. We prove that if the vertices are relabelled so that one of the Latin squares is exactly the Cayley table Cn of the group Zn, then the other square can be obtained from Cn by a cyclic permutation of row, column or entry identifiers, and we identify these cycli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2010

ISSN: 0012-365X

DOI: 10.1016/j.disc.2009.08.020